THE MINIMUM MISS DISTANCE PROBLEM* } 3

T.F. Bridgland, Jr.** and J.S. Hinkel**

I. Stated loosely, the minimum miss distance problem is that of controlling

the motion of an object (interceptor) in such a way as to minimize its distance of
closest approach (miss distance) to another moving object (target). In [1] ,
mathematical formulation of this problem was presented for the case in which the
interceptor is described mathematically by a system of ordinary differential
equations involving a number of more or less arbitrary (control) functions and

the target is described in mathematical generality sufficient to include most
cases of interest in applications of optimal control theory.

In this paper we present a detailed analysis of the minimum miss distance
problem as formulated inI:IJ , our initial results being concerned with the
dependence of miss distance upon the initial data and with the topological prop- -
erties of certain sets associated with miss distance. Our main result (Theorem 4)
is a substantial generalization of Filippov's theorem [2] on existence of optimal
controls for the time-optimal problem with stationary (point) target. To be ex-
plicit, we show that Filippov's conditions are sufficient to ensure the existence
of a control which not only minimizes miss distance but does so in minimum time.
TI. Let U denote a (control) set of vector-valued functions u having bounded,
Lebesgue measurable components and which map the set IT = {t l 0=ts T} into
euclidean m-space Rm. Let £ be a continuous map of IT x R® x R® into Rn; then

n . - -
for each (to,gaﬂﬁ)e IT x R x U, the local existence of a solution (in the sense

of Carath€odory) of the differential equation .,
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(1) x = £(t,x,u(t)), x(to) = x,

is assured. We assume that the solutions of (1) are unique and we denote the
value of a solution by xu(t',to,xo). We assume further that for each (to,xo,u)
n
€ IT x R x U, the solution may be continued over the interval [to,T] .
n . n

Let us denote by {_0- ',d} the space of all nonvoid, compact subsets of R,
metrized by the Hausdorff distance, d. A continuous map t ~ G(t) of IT into
{ﬂn ',df will be called a target [1,p. 264_] . For a point x €& R" and a nom-
void compact subset ACRn, the distance O (x,A) between x and A is defined by

O(x,A) = min < - a"
A

aeg

where " ' " denctes the norm in Rn. In [ 1, Lemma 1 ] it is shown that the
n
map (x,A) ~ d(x,A) is continuous on R" x {_Q_ ; d} .

In this paper we shall assume a prescribed target; we define a miss distance,

S(t,x,u), for (1) by

c)(xu( T ; t,x), G(T)).

As shown in [1] , the set
Tt0 = {Teletl| daz t,0, 6z) = Sexw}

has a least element - the first time of closest approach - which we denote by

t*(t,x,u). We note that the domain of definition of both S and t* is IT x R" x U.

The set of admissible controls U(t,x) is defined by

ut,x) = {u€u}t<ts(t,x,w) ST}

and the kernel, K(t,x), of U(t,x) is defined by




[
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K(t,x) = ‘{u GU(t,X)l (t*(t,x,u), xu(t-k(t,x,u); t,x))# Bw}
where

Bgo = {(t,x) €1 xRr" ' U(t,x) is nonvoid} .

T

Associated with By, are the following sets:

By, ={(t,x) € By ' S(t,x,u)< ¥ for some uGU(t,x)} , 0<¥<oo; @

B =n BY.

© o<y
Evidently Bg, = UYBY , so that Bgg is nonvoid if and only if By is nonvoid for

some Y & (0,00).

Lemma 1. For each T < © and each u € U, S is continuous on I x Rn.
———— T

Proof: Setting

CP,(t).t:eL‘é‘,i‘T‘]b(xu(T; foux,), BT D) - min g O (x,(T; tg,x ), 6(T)),

V(T ,t,%) = d(x (T t,x), &(TI) - dx (T; t ,x ), (T,
the following estimate is an elementary consequence of the definition of 8 :

(2) P + min, WT,5,0 S 8t x,w - §tx WEP) + max YT, t,%).
ze [t,T] ° zels,T

Ia

. - s - [a
As a consequence of our assumptions concerning (1) and of g3, Tim. %,3, p. 59}

14

it follows that when to € (O,T] there exist 041 >0, 042 > 0 such that for

bt - to|< 1, fI x - xoll < o), Wz, t,%) is defined for 211 T € [t - oc,.T] .
1f to = 0 the same assertion is true with [to - MZ,TJ replaced by IT.

With this established, (2) may be replaced by

(3) PCt) + nin'V(T,t,x) £ §(t,x,0) - SCto,xo,u) < PCt) + max YT ,t,%)
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where the extremizations are on [to - 0(2, T] when t, > 0 and on IT when to = 0.
In either case, the same theorem [3, loc. cit.] , together with the continuity of
9, G, implies the equicontinuity at (t,,x,) of the family (t,x) ~"/’(2’, t,x),
T € [t -, 7] (or T € 1; if t, = 0). This equicontinuity and the conti-
nuity of ¥ at t, imply, by virtue of (3), the continuity of S at (to,xo).

Theorem 1. For every ¥ , 0 < {é“, By 1is relatively open in Iy x R,

Proof: The assertion is trivial if By, is empty. If By, is not empty then for

(t,x) € By, we define
Pl xuw = dx,6(t) - S (t,x,u)

and note that P(t,x,u) > 0 for u € U(t,x). TFor all (t,x) € IT x R" such that

* .
t € [o,t (to,xo,u)),(to,xo) € Bgyy , we find

L) O (x,6(t)) - A (x (t*(t ,x ,w; t,x), Glt*(t ,x,,u))) = p(ty,x,,u)

+Ldx,600)) - d(x,,6(t, 0] + [dGxyCexeg,x ,us t,,x, ), GCE*(t_,x_,u)))

o' o

- b(xu(t*(to,xo,u); t,x), G(t*(to,xo,u)))].

It is then a consequence of (4), the continuity of O and G and the continuity with

respect to initial parameters of the solutions of (1) that for € > 0 there exists

o = x(to,xo,u,&) > 0 such that if (t—to'< o R x-—xou< ol then

IR Y -
(g, %,

NN S Y SV R - RN -~
uyy)j -~ P\LO,LO,UI - <.

G)

. P2 —~7 NN N s PP Nl N\
O X,\TJJ - OVXA\T"\T,,X,,us; L,XJ,

By taking € £ P(to,xo,u), this shows that Bgo is relatively open in IT x RD.

If (t,,x ) € By , 0< ¥ < 00  then since for fixed u and all ‘t—tol< ol ,

| x-x l{<o¢, ue U(to,xo) N U(t,x), the continuity of S implies that,by
taking lt—toi , " x—xofi still smaller if necessary, (t,x) € By . Hence, By 1is

relatively open in Iy x R".



Theorem 2. If Bpo is nonvoid and if there exists C > 0 such that

(*) xef(t,x,u(t)) Z -cC i x Ml 2 + 1)

for each (t,x) € B,, and all u & U(t,x) then for any nonvoid By , 0 E Y¥<oo
By is bounded.

Proof: From (1) and (*) there is obtained by integration the estimate

X

() Mg il 2+ 1% QlxgCertey,xg,ws t,x0 2+ 1) exp 20(e%(tg,x,,w) ~tg)

o’

for (to,xo) € Bgo , UE U(to,xo), since (t,x,(t; t5,x5)) € Bgo for all
t & [to,t*(to,xo,u)) and since u € U(to,xo) implies u € U(t,x,(t; ty,x,))

on the same internal. From the definition of S we find
(6) ¥ >3 x ) = flx(t4 ey, %05 to,xe) - &

for some point & € G(t*(ty,x,,u)). It is easy to show by means of a proof similar
to that of [1, Lemma 1] that the function A~xm‘aﬁ Hx" is continuous on

{_()_n . d} and then we obtain E = /6 =tén%: {Ceméft) “Z“} . It is then

a consequence of (6) that
fl X (¥ (ty, x5, u); to’xo)" <Y +F

and from this estimate and (5) there is obtained
Nxoll 2+1 < Lcy+ gr2+1] exp zor,

Since (to,xo) may be chosen arbitrarily in By , this completes the proof.
. . m
Theorem 3. Assume Bgg is nonvoid and let § be a mapping of Iy x R" into {_0. ; d}

for which the following condition is satisfied: a bounded function u on IT to R™

having Lebesgue measurable components is in U if and only if u(t) € é(t,xu(t,to,xo))



for t € LIy; then for each (t,x) & Bgo , K(t,x) is nonvoid.

Proof: Let us partially order U(to,xo) by writing uy < u, if and omly if
t*(to,xoul)_s_t*(to,xo,uz) and u;(t) = uz(t) almost everywhere on [to,t*(to,xo,ul)).
By the Hausdorff maximality principle, the partially ordered system {U(to,xo),‘<}

contains a maximal totally ordered subsystem which we denote by V. Defining
= *
o s‘l;p t (to,xo,u)

we see that there exists a nondecreasing sequence {un} , une V, such that

. * - . <
1'11_;m°‘,t (to,xo,un) G~ . Defining two elements u,,u, € {U(to,xo), } to be

equal when both uw‘< u, and u2'< u, hold, we suppose {un} to possess infinitely

2 1

many distinct elements (the finite case subsequently having an obvious treatment).
Then the sequence {un} , considered as a subset of U(to,xo), converges in measure
on [to, ¢ ); by virtue of [4, Theorem 30.5s, p.181] , the 1imit, u, of this
sequence is in U.I As a consequence of the definition of {un} , t*(to,xo,u) =g
so that u € U(t ,x ). If @ =T, we have immediately u € K(to,xo) since (T,x)¢ Bpo
for all x € R®. If O < T we reach the same conclusion, for otherwise we may choose

an arbitrary control w & U(d’,xu(d'; to,xo)) and define a control u € U(to,xo) by

u(t) = wt), tefo, o)

qt) = w(t), t€fe,T].

Now u may be used to extend V as a totally ordered subsystem, thereby contradicting
the maximality of V,
ITI. We now turn our attention to the problem of existence of optimal controls for

the minimum miss distance problem. Our results are contained in

I7t is clear that the definition of u(t) on [O,to) and [a',T] is not critiecal.



Theorem 4. Assume Bgpg is nonempty and let §be a mapping of Ip % R into {D—m;d}

-s_atisfying the condition of Theorem 3 as well as the following conditions: (i) i
is upper semi-continuous with respect to set inclusion; (ii) for each (t,x) € L. x r®
the set R(t,x) = {t‘(t,x, L 2 )' Pe §(t,x)} is convex; (iii) for each (t,x)

€ I.xR" and each Pe §(t,x)

T

2
xef(t,x, )T cCfixll ~ + 1),

where C 1s a positive constant. Then for each (to,xo)é Boo there exists a control
o . . . .. . . .
u € U(to,xo) which is optimal for the minimum miss distance problem; i.e.,

g(to,xo,uo) = min S(to,xo,u).
U(toyxo

(-1

Moreover, in the set Uo(to,xo) of such optimal controls there is one, u , which

is optimal for the minimum miss minimum time problem; i.e.,

o
o0 - .
t*(to,xo,u ) = min t*(to,xo,u ).

U‘o(to,xo)

Proof: Except for details which we examine, our proof coincides with that of

Filippov for the time optimal control problem. For fixed (to,xo) € Bgy , set
A = inf 8(1: ,X ,u).
| ¢ /@FS Y o o
W Lo O,

If U(to,xo) is finite, the proof is trivial. Otherwise there is a sequence {un} .

u, € U(to,xo), for which nl_)mcto S(to,xo,un) = A . The argument of Filippov

contained in the proof of t2, Theorem 1] shows that the sequence {xn} ,

x ()& x, (t,t,,x,), is uniformly bounded and equicontinuous on [to,T] .
n



L] _8_

There is thus a subsequence of {xn} which converges uniformly on this interval
to an absolutely continuous function whose value we denote by x(t). Filippov's
argument [2, loc. cit.] then shows that there is a function u® € U for which x
is a solution of (1) with u replaced by u®. In a manner similar to that of the
proof of Lemmal we find
7 min, [ x(7), &) - d( 7)), (T NI = SCt,x,,u) -S(ty,x,,u”)

Te[t,,T]
<  max_[dx(7), 6T - dx(z), sz N].

zelt T

o

From this estimate, together with the continuity of . , G and the uniform conver-
gence of a subsequence of {xn} to x, we conclude that S(to,xo,uo) = A .
Hence u’ € U(t,,%o) and the proof of the first assertion is complete.

Now let us set

7 = inf t*(to,xo,uo);
Uo(t,, %)

. . . lo) .
certainly 7 2 t, and we wish to show first of all that 7 >t,. IfU (to,xo) is
finite this demonstration, as well as the proof of the second assertion of the
theorem, is trivial. Hence, assuming Uo(to,xo) to be infinite, there is a

o
sequence 1wV , vp €U (t_,x.), such that 1im t*(t_,x. ,v.) = . Since U°(tg,x.)
q {n} n o' %o N> oo 0'%0'Vn 7 0:%o
C K(tgy,x,) we see that if 7= to then every neighborhood of (t,,x,) intersects

the complemeni of Bgg . This contradicts Theorem i, so we conclude that 7 P to-
Since the sequence {yn} » yp(t) = xvn(t;to,xo), is uniformly bounded and equi-
continuous on [to,T] we may conclude as above that there exists v° € U for which

the solution of (1), with u replaced by v°, is the uniform limit on [to,T] of a

subsequence of {yn} . By virtue of (7) we see that Ve U°(to,xo) and thus
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7 ,<.t*(to,xo,v°). On the other hand, denoting by y(t) the value of the solution
of (1) corresponding to v° and taking a subsequence of {yn} if necessary, we find

by virtue of the continuity of the functions involved that

(8)n_1>i:1° S(to,xo,vn) =n-1>i:1a a(yn(t*(to,xo,vn)), G(t*(ty,x,,v,))) = a(y(7),G(7)).

Since g(to,xo,vn) is independent of n, (8) implies that 7g_t*(to,xo,v°) and
this together with the above result yields 7 = t*(to,xo,vo). With the identifica-
tion uoo =0 the proof of the theorem is complete.

Finally let us consider the set B defined by
ol ={(t,x) € Bgo | S(t,x,u) = 0 for some u & U(t,x)} .

Evidently if ﬁ is not empty then B, is not empty; conversely we have

Corollasz 1. Under the conditions of Theorem 4, if B, is not empty then ﬂ is not

empty and thereforeﬁ = Bo.
Proof: As a consequence of Theorem 4 and the definition of By , if (tg,x,) € B,

then there is a sequence {"n} y Wp éUo(to,xo), such that S(to,xo,wn)<n-1.
An argument like that of Theorem 4 permits us to conclude that there exists u € U°
(to,xo) such thatS(to,xo,G) = 0.

By virtue of Corollary 1 and Theorem 1, the setﬂ is a Borel set when the
conditions of Theorem 4 are satisfied. Hence, denoting by/(. Lebesgue measure
in I, x Rn, n‘ve iS/i—measurable. Moreover, if the condition (iii) of Theorem 4
is strengthened by replacing xef by lxof' , then it follows from Theorem 2 that

/4(5)< OO | We close with the following conjecture: under the conditions of

Theorem 4, ifﬂ is nonempty then /((5) > 0.
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